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ABSTRACT

Stacked graphs have been widely used to represent multiple time
series simultaneously to show the changes of individual values and
their aggregation over time. However, when the number of time se-
ries becomes very large, the layers representing time series with
small values take up only very small proportions in the stacked
graph, making them hard to trace. As a result, it is challenging for
analysts to detect the correlation of individual layers and their ag-
gregation, and find trend similarities and differences between layers
solely with stacked graphs. In this paper, we study the correlations
of individual layers, and their aggregation in time series data pre-
sented with stacked graphs, focusing on the local regions within any
given time intervals. Specifically, we present STAC, an interactive
visual analytics system, to help analysts gain insights into the cor-
relations in stacked graphs. While preserving the original stacked
shape, we further link a stacked graph with auxiliary views to facil-
itate the in-depth analysis of correlations in time series data. A case
study based on a real-world dataset demonstrates the effectiveness
of our system in gaining insights into time series data analysis and
facilitating various analytical tasks.

1 INTRODUCTION

Stacked graphs have been widely adopted for visualizing time-
varying data in various fields, such as email messages analysis [11],
tracking news stories [12], music listening histories analysis [4] and
so on. Compared with more widely used line graphs, which show
the fluctuation of each time series, stacked graphs are more use-
ful for concurrently showing the proportion of each time series in
the aggregation, as well as the volume changes. By stacking one
layer onto another, stacked graphs can be used to avoid the overlap
of time series in line graphs and thus have better scalability with
number of time series [14].

While stacked graphs can visualize hundreds of time series con-
currently [29], analysts might still find it difficult to conduct cor-
related analysis among layers. First, since the aggregation distorts
the baselines of the layers, identifying the trend of each individual
layer is non-trivial, and it is even harder to spot the layer-to-layer
relationship in a stacked graph. For example, from the stacked
graph in Fig. 1(a), we cannot easily pinpoint the fluctuations and
the similarities of A and B (as well as C and D). Second, the re-
lationships between individual layers and their aggregation remain
unclear. This problem leads to ambiguity in understanding how the
aggregated shapes are formed: it is hard to know if an aggregated
shape is constructed by a large number of layers with similar trends,
or only represents the shape of one or two outliers. For example,
in Fig. 1, the dent at time t is mainly caused by layer A and B,
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whereas the other series have much less contribution to the aggre-
gation. Layers C and D, which contain bumps at this point, are not
obvious in Fig. 1(a). Third, the complexity of stacked graphs lim-
its the recognition of local time-patterns. Since stacked graphs are
mainly used for time series data, it is very likely for layers to span
long in time. While the overall trends might be easy to spot, some
small yet potentially valuable variations could easily be overlooked.
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Figure 1: (a) An aggregated dent at t. (b) The involved layers A, B,
C and D contribute differently. A and B are similar to the aggregation
showing a dent while C and D have an opposite trend showing a
bump.

To tackle these problems, we introduce STAC in this paper, a vi-
sual analytics system that augments stacked graphs with additional
visual representations and intuitive interactions, so that users could
gain more insight into the trends of individual time series, the rela-
tions between layers and their aggregation, which are not obvious
in traditional stacked graphs. Specifically, STAC reduces ambigu-
ities in stacked graphs (“S” in STAC) with three additional linked
views, namely “Trend view”, “Aggregation view” and “Correlation
view”. Moreover, with a sliding time window, analysts can inter-
actively explore how multiple time series change during a certain
time period and how they vary over a large time scale.

The main contributions of this paper are summarized as follows:
• Examine the problems for analyzing multiple time series with

stacked graphs, especially the relations among multiple time
series, the aggregation, and their changes over time.

• Implement an interactive system with multiple novel views to
show the flows of stacked graphs, which can reveal relations
of layers in different time scales.

• Conduct a case study based on a real-world dataset, which
demonstrates the usefulness of our system, and discuss the
insights that could be gained by using our system.

2 RELATED WORK

In this section, we provide an overview of related research for time
series data mining and time series data visualization.

2.1 Time Series Data Mining
A time series records a set of values collected over time. As such,
the size of time series data grows with time [22]. Typical exam-
ples include economic forecast [21], intrusion detection [6], gene
expression analysis [8], medical surveillance [23] and hydrology
[31]. Among all the techniques used in time series data mining,
clustering [18] is perhaps the most frequently used. However, when
the time span of a time series is long, it is impractical to use whole
time series clustering for data analysis, and sub-sequence time se-
ries (STS) clustering is a viable alternative [20]. In our work, we
apply STS clustering to support multiple time segments analysis
and adapt DBSCAN [13] to cluster the time series.



2.2 Time Series Visualization
Visualization of time series can be done through various methods
[1, 2]. For example, line graphs are most used to show multiple time
series [28]. With time and values mapped to a common baseline,
it is easy to compare the differences of values and trends. How-
ever, line graphs are only capable of comparing multiple time series
when the number of time series is quite small [14]. To avoid over-
plotting, small multiples are introduced to show several time series
[28], where each time series has its own baseline. With small multi-
ples, users can have a clear overview of the changes of several time
series over time. However, it is not space efficient and comparisons
between time series remain difficult.

Stacked graphs are used to simultaneously show each layer and
their aggregation with one common timeline [29]. With stacked
graphs, analysts can clearly analyze a large number of time series
and their aggregation, and detect the time series with larger data
values. Many studies have focused on improving stacked graphs
from different aspects and have applied stacked graphs to various
fields. ThemeRiver is proposed to depict temporal thematic change
with smooth curves in a symmetrical style [12]. Later on, Byron
and Wattenberg [4] introduced Streamgraphs to improve the legi-
bility and aesthetics of stacked graphs. In addition to aesthetics and
legibility, utilities of stacked graphs have long been improved by
combining with additional tools and visual elements. For exam-
ple, NameVoyager [29] improves the exploration of stacked graphs
by combining search and filtering with stacked graphs. Subse-
quently, TouchWave [3] is presented to enable layout adjustments
by implementing multi-touch capabilities on multi-touch devices.
TIARA [30], Cloudlines [16], TextFlow [5], and EvoRiver [26] are
exploratory text analytics systems that integrate text mining tech-
niques to explore large collections of text data and to reveal the
evolution of topics over time. Apart from text data, stacked graphs
are also used for ranking changes in search engine data and other
data by embedding color bars and transition glyphs to augment
time series data analysis [24, 25]. Other applications include per-
sonalized recommendations of stacked graphs [27] and interactive
stacked graph systems, enabling updating information stream [7].
Although previous systems have used rich visual encoding from
different aspects, none of them can support efficient exploration of
correlations among multiple time series, which is essential for our
time series data exploration. Some recent work also aims to facili-
tate the analysis of correlations in time series data. However, they
either focus on time series curves instead of stacked graphs [15] or
adopt an integrated design that does not support comprehensive cor-
relation analysis with multiple time series and time segments [32].
In this paper, we address a similar problem with quite a different ap-
proach. Our system integrates several well-designed visualization
techniques into a linked view system to help people understand the
construction of stacked graphs while maintaining the advantages of
using stacked graphs to present time series data.

3 REQUIREMENT ANALYSIS

In previous work, stacked graphs have been extensively used, as
users can easily locate the layers with the most contribution to the
trend of the aggregation. However, the volumes and trends of less
significant time series should not be ignored.

3.1 Analytical Tasks
We list four types of analytical tasks and further compile a set of
design rationales.

T.1: Individual Time Series: A basic requirement of analyzing
time series data is to show how each time series changes over time.
Analysts should be able to understand how the data values of indi-
vidual time series changes over time. In addition to the values of
each time series, analysts should know the trend of individual time
series to understand how they develop.

T.2: Time Series Aggregation: It is also important to study the
relations between individual time series and the aggregation of a
set of time series. When studying time series aggregation, analysts
need to know the individual contributions of an aggregation. More
specifically, the time series with positive and negative contributions
to the whole aggregation should be identified.

T.3: Multiple Time Series: Correlation exploration of multi-
ple time series is crucial for time series data analysis. Analysts
need to understand the relations of individual time series in multiple
time scales. More specifically, the similarity of any two time series
should be visualized. In addition, the clusters and the changes of
clusters of multiple time series should be extracted to help analysts
understand the evolution of time series over a long period of time.

T.4: Time Interval segmentation: As the relations of time se-
ries can change greatly over a large time scale, time interval seg-
mentation should be properly done to help analysis of the changes
over time. With time interval segmentation, the exploration of par-
tial time scale can be done at different time scales. Furthermore,
the analysis using different time intervals should be facilitated.

3.2 Design Rationale

Based on the identified analytical tasks, we further compile a set of
design principles of developing our time series analytics system:

R.1: Multiple Time Series Exploration: As discussed, the
analysis of time series data can be divided into four components,
i.e., individual time series, multiple time series, time series aggre-
gation and time interval segmentation. The system should allow
users to easily recognize patterns from different perspectives. The
system should also support multiple well-coordinated views to en-
able joint analysis.

R.2: Multiple Time Segments Analysis: The multi-scale anal-
ysis of the time series includes two components: support of multiple
time points/scales and partial exploration of time series datasets. To
analyze and identify the patterns between scales, the system should
support visual comparisons between different time windows and
subsets of time series data.

R.3: Interactive Visual Feedback: The analysis of time series
requires a trial-and-error process. It is crucial for analysts to in-
teract with data directly. In addition, analysts may have different
requirements and need further exploration of certain properties of
data. It is important to support interactions that can filter data in the
process of analysis.

R.4: Intuitive Visual Narrative: By supporting intuitive visual
narrative, it is easier for analysts to follow a predefined internal
logic of the analysis and presentation of visual patterns. Analysts
may have requirements for the customization of the internal logic
of the analysis of different perspectives. With an intuitive narra-
tive style, analysts can more effectively present their findings and
communicate with each other to iteratively improve their work.

4 VISUALIZATION DESIGN

Motivated by the identified requirements, we have designed four
sub-views to support correlated analysis.

4.1 Sub-view Design

Stacked Graph View: The Stacked Graphs View is the essential
view for users to have a basic idea of the original data. With this
view, the advantages of concurrently viewing both individual time
series and aggregations can be maintained, and thus, users could
easily grasp an overview of the whole time series.

Trend View: It is hard to understand relative variations of indi-
vidual time series when their data values are small. To make their
trends easier to assess, we calculate the slopes of each individual
time series at every time point, and take the output as the trend.
Specifically, we normalize a time series by subtracting the mean



Figure 2: Trend view: each layer encodes the rate of value change
for each time series.

value in the sequence and dividing all values by the standard devi-
ation to extract the trends. This normalization enhances the shape
aspect of the sequence [9]: y = (y− ȳ)/σ . It further enhances the
local features by maximizing their curvatures, which is also com-
monly adopted in STS clustering [10]. We choose stacked graphs
instead of commonly used line graphs for its scalability: line graphs
overlay on each other and the trend will be hidden.

Aggregation View: Another important goal is to show the rela-
tions between an individual time series and the aggregation. Ana-
lysts need to know the contributors and internal structures of the ag-
gregation. Because of the variation in long time sequences, the sim-
ilarities of time series may change greatly at different time points.
Thus, we use time segmentation to allow analysts to understand
how each group changes at different time intervals.
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Figure 3: Aggregation view: in each time segment, time series are
divided into groups based on their similarity to the aggregation.

By default, we divide the time series within each time segment
into three groups based on the similarity between each individual
layer and the aggregation. The range of similarities is divided into
three equal subranges. The layers whose similarities fall into the
three subranges are grouped accordingly. The first group of time
series data has a consistent trend with the aggregation: they follow
the same increasing or decreasing trend of the corresponding ag-
gregation. This group of time series has contributions to the whole
trend. In contrast, the time sequences in the second group would
have unclear contributions to the aggregation, and the third group
has an opposite trend to the aggregation. When the aggregation in-
creases, the time series decreases, and vice versa. Users can also
adjust the grouping criterion for different needs. After that, each
group of layers is aggregated. Users can identify the volume and
the number of layers of each group. The layers are colored as in the
Stacked Graphs View, such that we could see how the aggregation
of each group changes, as well as how the layers are classified into
different time segments (Fig. 3).

Correlation View: To demonstrate the relations among multiple
time series, we use a correlation view to show the relations of all
the time series. We choose the widely used Dynamic Time Warp-
ing (DTW) to calculate the similarity of time series data [19]. Af-
ter that, we use DBSCAN to generate clusters of time series data.
Since the correlation of a large number of time series may change
considerably over a long period of time, it becomes less useful to
cluster multiple time series through a large time scale. Therefore,
we segment the time series into smaller time intervals to capture
local similarities within one interval, as well as between multiple
intervals. To support an intuitive and effective exploration of rela-
tions among multiple time series, we use a multidimensional scal-
ing (MDS) [17] layout, which is well-known for revealing the dis-

tributions of the time series data, to visualize the relations among
time series. Then, we use grey outlines as visual cues to enhance
the display of clusters.
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Figure 4: Correlation view: in each time segment, an MDS layout
shows the distribution of the time series. Closer time series reflect
more similarity.

4.2 Interaction
Based on the design rationale, our system should enable analysts to
interact with data and facilitate exploration with flexibility. Specif-
ically, STAC supports the following interactions:

Linking: The system supports linking among the four views to
facilitate comprehensive visual feedback. It also facilitates multiple
time series exploration. For example, if a time series in the aggre-
gation view is selected, the corresponding time series in the stacked
graph view, trend view, aggregation view and correlation view will
be highlighted.

Filtering: Filtering enables analysts to focus on important infor-
mation, and eliminates less important time series to help analysts
handle large scale and uncertain datasets. STAC allows analysts to
select important layers and eliminate less important ones through
different views.

Customization: Analysts can configure our system by choos-
ing parameters, such as the grouping criterion for the Aggregation
View. Analysts can also segment a long time period by selecting a
shorter time interval. To support intuitive visual narrative, the order
of the four views can be rearranged by analysts to cater their own
needs.

5 SYSTEM OVERVIEW

We design our system to allow users to explore and analyze time
series. The framework of our system consists of three modules:
data preprocessing, data modeling, and visual analysis.

Data preprocessing extracts time series data from raw datasets,
and stores time series data in a unified form. The data analysis
module computes the trend of the time series, the similarity be-
tween two time series, and groups the time series based on their
similarity to the aggregation using dynamic time warping [19]. In
order to support multidimensional scaling (MDS) [17] in the Cor-
relation view, we calculate the similarity between each time series
pair with DBSCAN [13] to cluster the time series, because it is the
most representative density-based clustering algorithm. In addition,
we compute the similarity of each time series to the aggregation to
support classification of all the time series into three types for an
aggregation view. When users select a time window, we send the
data to the back-end and recalculate the results for visualization to
support interactive time segmentation.

The visual analysis module provides a visual interface integrat-
ing four linked views to help users explore multiple time series data.
All the four views of our system are placed horizontally to fit into
the wide screen of modern monitors better, with the timeline start-
ing from left to right. The four views align vertically with the same
time axis to enable interactive joint analysis (Fig. 6). With a control
panel on the left, users can customize the datasets in use, the time
range for analysis, and the viewing sequence of the four views. To
support interactive joint analysis, we allow users to configure time



Figure 5: System workflow: In the data preprocessing phase, we extract time series from raw data. In the data modeling phase, we conduct
trend extraction, aggregation analysis and correlation analysis. In the visual exploration phase, four coordinated views are provided to support
four basic analytic tasks.

interval segmentation by selecting a certain range of time scale as
a time window (ti, t j). Based on the selection, the time interval can
be calculated (T = t j−ti), and the time axis is segmented into many
time windows (Eq. (1)). Through time segmentation, users can eas-
ily compare and trace the differences of the patterns over time:

Taxis = ...∪ (ti−T, ti)∪ (ti, t j)∪ (t j, t j +T )∪ ... (1)

6 RESULTS

6.1 Implementation
We have conducted experiments to explore real-world time-series
data and give a case study to show how the system works. Our sys-
tem is implemented as a web-based application that allows users
to interact with preprocessed data. We use MEAN.JS with Mon-
goDB, Express, AngularJS, and Node.js, to build an interactive vi-
sualization system. We integrate the four views implemented in the
front-end visualization with D3.js.

6.2 Case Study
We use the unemployment rates of 14 industries from 2000 to 2010
collected by the US Bureau of Labor Statistics to analyze if the
rates among industries share similar variations, or if the summation
is similar to individual rate sequences.
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Figure 6: Visualization generated by STAC for the unemployment
rates of 14 industries. The original stacked graph is shown in (a), fol-
lowed by (b)trend view, (c)aggregation view and (d)correlation view.

We first notice that in the trend view (Fig. 6(b)), layer A (Gov-
ernment) reaches a significant height around 2009, whereas in

Fig. 6(a), it is nearly unnoticeable. This phenomenon suggests
that while the unemployment rate represented by this layer does
not constitute a large proportion compared to the others, it varies
greatly, revealing an unstable unemployment state, which could be
ignored easily with stacked graphs alone.

The aggregation view is also informative. We configure the ag-
gregation view by adjusting the three subranges of similarity and
classifying the layers into “highly similar”, “somewhat similar” and
“not similar”. After navigation, we first notice that there is at least
one group in each period whose aggregated shape is flat. This find-
ing indicates no matter how the aggregation varies, the unemploy-
ment rates of some industries are in fact reasonably stable. Another
example for the differences between the aggregation and the layers
is shown in Fig. 6(c). At point t, we could see a small bump which
is not in the “highly similar” group. From the observation, we find
it is the result of the layers in cluster B. This could be an indicator
for users to adjust time segments to perform more detailed analysis.

We also notice a clustering phenomenon in the correlation view,
as in Fig. 6(d). For instance, in interval T1, almost all points repre-
senting layers are placed on the right except points a and b. Further
looking around these two points, we find they are far from the other
points in all the intervals. Referring back to the original data, we
find that these two, representing Agriculture and Construction, re-
spectively, indeed vary far more significantly than the other layers,
showing unstable unemployment rates.

7 CONCLUSION

In this paper, we propose STAC, an interactive visual analytics sys-
tem to facilitate analysts using stacked graphs to better understand
time series data. We use four views to show how time series and
their aggregation evolve with time. Results show that STAC can
effectively reveal patterns and help analysts assess multiple time
series from different aspects.

Although useful and effective, STAC has some design limita-
tions. A major problem is that for the four views, we use the same
color encoding for time series, which limits the number of time
series that can be encoded. We will further extend STAC to im-
prove its scalability. Moreover, to demonstrate the evolutions and
the groupings of the layers over time, we plan to improve the vi-
sual analytical components by connecting layers between time seg-
ments.
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